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Trifluoromethanesulfonate. Application to the Selective 1,4-Chiral
Induction in the Aldol Reaction of t-Butyl §-Hydroxy Carboxylates

Koichi NARASAKA, Yutaka UKAJI, and Kazutoshi WATANABE
Department of Chemistry, Faculty of Science,

The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

The presence of lithium trifluoromethanesulfonate
accelerates the enolate formation from t-butyl ¢-hydroxy
carboxylates with lithium diethylamide. The reaction of the
resulting enolates with ketones or benzaldehyde affords the

corresponding a,8-syn aldol adducts stereoselectively.

In the preceding communication, we reported the stereoselective 1,4-chiral
induction in the alkylation reaction of lithium enolates generated from t-butyl

1) Highly selective chiral induction directed by a hydroxyl

§-hydroxy carboxylates.
groupz) in the above reaction prompted us to apply this method to the stereo-
selective introduction of various electrophiles to §-hydroxy carboxylates.

First we examined the aldol reaction of t-butyl 5-hydroxyhexancate (1lA).
Lithiation of 1A was performed at -78 ‘c by the treatment with 3 molar amounts of
lithium diethylamide in THF-hexamethylphosphoric triamide (HMPA). The resulting
solution of the enolate 2 was treated with acetone at -100 °C to produce the aldol
adducts 3a and 4a in 78% yield, however, the stereoselectivity was not
sufficiently high in this reaction (3a:4a = 82:18). The generation of the enolate
2 at -100 °C for 1 h in THF-HMPA consequently enhanced the selectivity toward syn
aldol product up to 86:14, but the yield of aldol products was decreased to 53%.
The low yield suggested that the transformation of 1A to the enolate 2 was

incomplete at -100 °C.
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In order to generate the enolate 2 smoothly even at -100 °C, the lithiation
was examined in the presence of various lithium salts based on the consideration
that the lithiation might be facilitated by the coordination of such Lewis acids
to the ester group.3) Finally it was noted that the addition of lithium
trifluoromethanesulfonate (LiOTf) or lithium iodide enhanced the lithiation, and

especially the use of excess LiOTf was found to promote the lithiation effectively
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Table 1. Aldol reaction between 1A and acetone

Temp of lithiation/°C  Additived) 3a : 4aP) Total yield/%
-100 —» -78 82 : 18 78
-100 86 : 14 53
-100 LiI 88 : 12 79
-100 LiOTE 91 : 9 92
-100 LioT£C) 85 : 15 74
-100 LiOTf 87 : 13 g2d)

a) 3 molar amounts of additive were used.

b) The ratios were determined by 13¢c nMr spectra.

c) 1 molar amount of LiOTf was used.

d) 2.2 molar amounts of lithium diethylamide were used.

(Table 1). Thus the hydroxy ester 1A was converted to the enolate 2 with 3 molar
amounts of lithium diethylamide in the presence of 3 molar amounts of LiOTf at
-100 °C for 2 h in THF-HMPA, and the reaction with acetone gave the aldol adducts
3a and 4a in 92% yield. Furthermore, the high stereoselectivity toward the syn
aldol product was also achieved by the addition of LiOTf (3a:4a = 91:9).

The reaction of t-butyl 5-hydroxyhexanoate (lA) and t-butyl 5-hydroxynonano-
ate (1B) with acetone and cyclohexanone was conducted by the combined use of LiOTf
with the results shown in Table 2. 1In all cases, the syn aldol products were
obtained in high yield with high stereoselectivity.4)

A typical experimental procedure is described for the reaction of 1A and
acetone: To a THF (5 mL) solution of LiOTf (323 mg, 2.07 mmol) was added a THF (5
mL) solution of diethyl amine (179 mg, 2.44 mmol) under an argon atmosphere, and
cooled to -78 °C. Butyllithium (1.25 mL of a 1.54 M solution in hexane) was added

oH  Q 1) 3LiNEty, TFOLi H 0 OH 0
R?WO_I_ 2) RZR3C=0 Rl O‘l— n R1WO-|‘—
THF —HMPA 2 on 2o
, -100°C R3 R3

Table 2. Aldol reaction of 1 with ketones in the presence of LiOTf

r! R2 R3 3 : 42) Total yield/$
a Me Me Me 91 : 9 92
b Me -(CHy) 5~ 86 : 14 99
c n-Bu Me Me 91 : 99
d n-Bu -(CHy) g5~ 93 : 97

a) The ratios were determined by 13¢ nmr spectra.
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and the solution was stirred at that temperature for 15 min followed by the
addition of a THF (1 mL) solution of HMPA (0.66 mL, 3.79 mmol) and then cooled to
-100 °C. A THF (4 mL) solution of t-butyl 5-hydroxyhexancate (119 mg, 0.63 mmol)
was added to the mixture and stirred for 2 h at that temperature, and then a THF
(4 mL) solution of acetone (91 mg, 1.57 mmol) was added. After being stirred for
30 min at -100 °C, the reaction was quenched with sat. aqueous NH4Cl. Extraction
with ether and purification by preparative tlc on silica gel gave syn-t-butyl 5-
hydroxy-2-(1-hydroxy-l-methylethyl)hexanoate and the anti isomer (total 142 mg,
92%) in a ratio of 91:9, respectively.

The aldol reaction of 1A and benzaldehyde was examined and the high
stereoselection between o,8-carbons was also achieved (5+6 : 7+8 = 92 : 8),

however, the stereocontrol between a,B -relationships was not sufficient.

1) 3LiNEt,, Troi  OH  OH OH  OH OH OH OH OH
Hisouiane COx4- COz2+- 024~ CO21-
80% 5 6 7 8
5:6:7:8 =73:19:4:4

Thus, it was noted that LiOTf efficiently promote lithiation of esters with

lithium amides and was utilized successfully to the selective 1,4-chiral induction

in the aldol reaction of 6-hydroxy esters.

The authors are grateful to Professor Teruaki Mukaiyama for valuable

discussion during this work.
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Scheme 1. (a): TBSC1, Et3;N; 90%, (b): LiAlH,; 76%, (c): p-TsCl, pyridine;

94%, (d): LiAlH,; 69%.
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